Positron Annihilation in Material Research

- Introduction
- Positron sources, positron beams
- Interaction of positrons with matter
- Annihilation channels: Emission of 1, 2 or 3 γ-quanta
- Annihilation spectroscopies: Lifetime, angular correlations, Doppler broadening
- Study of solid state properties by annihilation
- Medical application: PET (Positron emission tomography) three-dimensional images of metabolic activity within the human body

Links: http://www.positronannihilation.net/ http://positron.physik.uni-halle.de/

Diracs prediction of the positron

The positron (e+) as the antiparticle of the electron (e-) with electric charge of +1e, spin of 1/2, and the same mass as an electron was predicted by P.A.M. Dirac in 1930 as an interpretation of the negative energy solutions of his relavistic equation of motion for the wavefunction of the electron

$$\Xi = \pm \sqrt{p^2 c^2 + m^2 c^4}$$

For each quantum state possessing a positive energy E, there is a corresponding state with energy -E.

Dirac hypothesized that the "vacuum" is the state in which *all* the negative-energy states are filled (Dirac sea), and all the positive-energy states are empty.

A hole in the sea of negative-energy electrons would respond to electric fields as if it were a positively-charged particle = **POSITRON** (named by C. D. Andersen)

Positron sources

I. Positrons from ß+ decay

 $p \Rightarrow n + e^+ + v$

For material research mostly ²²Na ²²Na $\xrightarrow{2.602 \text{ a}}$ $\beta^+ (0.1 \%)$ ²²Ne $\xrightarrow{3.7 \text{ ps}}$ $\gamma (1.274 \text{ MeV})$

marks the birth of e+

Production

- Accelerator
 Mg²⁴ (d,α) Na²²; σ = 19 mb @ 32 MeV
- Nuclear reactor double reaction: Li⁶(n, α)H³, Ne²⁰(H³, n)Na²² Commercially available up to 4GB (100 mCi)

Continuous positron energy distribution

Positron sources

II. Positrons produced by pair production

Positron sources

III Positrons from neutron induced pair production @ FRM II, Munich University, Gemany

thermal neutrons

Interaction of positrons with matter

Moderation and variable-energy positron beams

The continuous ß+ spectrum of ²²Na

The high ß+ energies allow deep implantation of positrons into solids,

But: The continuous ß+ spectrum results in broad positron depth distributions

Therefore:

Non-moderated positrons are unsuited for studies of thin layers and near-surface regions

Solution:

Acceleration of moderated (monoenergetic) positrons

Accelerator of moderated positrons at Halle University

Implantation profiles at different energies

Electron-Positron Annihilation

Since the positron is the antiparticle of the electron, it annihilates with the electron by gamma-ray emission liberating an energy of 2x511 = (1024) keV

The annihilation process follows the laws of quantum electrodynamics, conserving energy, charge, parity, momentum, and angular momentum of the e+ e⁻ pair

Annihilation channels

Emission of 2 photons

is the most probable process. Parity and angular conservation require antiparallel photon spins. In the center of mass system momentum and energy conservation leads to the emission of the 2 antiparallel photons with energy of 511 keV each:

Emission of 1 photon

requires the participation of a third particles, e.g. a nucleus. Compared to 2γ -emission, probability reduced by $\alpha = 1/137$ (fine structure costant).

Emission of 3 photons

is possible, but a factor α^3 less probable than 2-photon emission

2-photon annihilation

I. Life time

The annihilation probability: $\lambda = \pi c r_0^2 n_e \frac{r_0}{n_e} = \text{classical electron radius}$ $n_e = \text{electron density}$

The positron life time provides information on the electron density

II. Angular distribution

Laboratory system

The e+e pair has a kinetic energy of the order of 10 eV and a momentum of about $p \sim 10^{-2} m_0 c$. These are mainly provided by the electron since the positron is thermalized (E(e+) ~ 1/40 eV). This leads to changes in the energy and the emission direction of the two photons

γγ-angular distribution of 2-photon annihilation:

A finite electron momentum leads to deviation from 180-degree emission.

Angular distribution calculated by Rindler (1960) using special relativity

Momentum conservation $\vec{p}_e = \vec{p}_1 - \vec{p}_2 \implies \sin \Phi \approx \mathbf{p}_T / \mathbf{p}_{\gamma 1} = \mathbf{p}_T / \mathbf{m}_0 \mathbf{c} \approx 10^{-2}$

Order of magnitude: sin $\Phi \approx \Phi = 10^{-2} \approx 3/10$ degrees

Measurements of the angular distribution provides information on the transversal component of the electron momentum

Doppler shift in 2-photon annihilation

The e+e- pair moves when annihilating, resulting in an **energy shift ΔE** (Doppler effect) of the annihilation radiation

The energy shift $\Delta E = \pm cp_L/2$ provides information on the **longitudinal momentum component** of the the annihilating e+e- pair

Positron Annihilation Spectroscopies

Positron Annihilation Spectroscopies

Positron life time spectrometer

Life time spectra in different materials

Open-volume defects studied by positron-lifetime measurements

Positrons are sensitive probes for open-volume defects, such as vacancies and their agglomerates, nanoprecipitates, nano-porosity, grain boundaries of nano-grains, acceptors

Lattice with vacancies

Potential

Ermüdeter Zustand

Several exponential decay components in the positron lifetime spectra reflect different defect configurations

Analysis by non-linear fitting: life times T_i and intensities I_i

$$N(t) = \sum_{i} \frac{I_i}{\tau_i} \exp(-\frac{t}{\tau_i})$$

M. Forker, Nuclear Techniques in Solid State Research, CBPF 2012

Trapped in such defects, positrons experience a smaller electron density and the positron lifetime therefore increases with respect to the defectfree sample.

Positron-lifetime studies of DEFECTS

- (i) Equilibrium Defects vacancies in gold
- T< 500 K: Annihilation of free e+ T_{free}
- Vacancy concentration in equilibrium increases with T:

T > 1000 K: Annihilation of vacancy-trapped e+ - T_{vac}

Vacancy formation energy E_v

(ii) Non-equilibrium defects in Fe

- Electron-irradiation produces vacancies
- e+ life time therefore increases after irradiation
- annealing leads to vacancy clustering and further life time increase

Fe-5 ppm C 6 x 10¹⁸ e/cm

irradiated

TIME (nsec)

after 230 K anneal

105

104

STNU03

 10^{2}

10¹

unirradiated

0

2

Angular correlation of annihilation radiation-ACAR (1-dimensional)

Determination of transverse electron momentum

 $\sin \Phi \approx \mathbf{p}_{\mathrm{T}} / \mathbf{p}_{\gamma 1} = \mathbf{p}_{\mathrm{T}} / \mathbf{m}_{0} \mathbf{c} \approx 10^{-2}$

1D-ACAR study of the electronic structure of simple metals

M. Forker, Nuclear Techniques in Solid State Research, CBPF 2012

2-dimensional ACAR

Measurements of both transversal momentum components

 $\sin \Phi_{x,y} \approx p_{x,y} / m_0 c$

position sensitive (Pixel) detector

2D-ACAR study of electron moment distributions in solids

Defect-free GaAs

Tanigawa et al., 1995

M. Biasini (1995)

By taking measurements in several directions of a single crystal, the 3-dimensional Fermi surface can be reconstructed

A typical 2D-ACAR measurement may take **several weeks** and contain several hundred million counts

Doppler Broadening Spectroscopy

Measurement of the width of the Doppler-broadened 511 keV annihilation line

M. FORKER, NUCLEAR LECHNIQUES IN SOLID STATE RESEARCH, CBPF 2012

 γ -ray energy [keV]

0.0

The Shape Parameters S, W of the Doppler-broadened Annihilation Line

S parameter $S = A_s/A_0$ Valence electron (low momentum) annihilation sensitive to open volume defects

W parameter $W = A_w/A_0$ Core electron (high momentum) annihilation sensitive to the chemical (element) surrounding at the annihilation site

Vacancies in thermal Equilibrium

Coincidence Doppler Broadening Spectroscopy

..... I onser, muclear Techniques in Solid State Research

Positron-Emission-Tomography (PET)

Traditional diagnostic techniques, such as x-rays, CT scans or MRI, produce images of the body's Coincidence anatomy or structure. Processing Unit Sinogram/ Listmode Data 🄷 Sun Annihilation Image Reconstruction

¹⁸F- 2-Fluor-2-desoxy-D-glucose (2-FDG) PET scan Image of the local glucose consumption

PET produces images of the body's basic biochemistry or function

Positron emitters used in PET

Radionuclide	Half life	Nuclear reaction
Oxygen-15	2.073 min	$^{14}N(d,n)^{15}O$
Nitrogen-13	9.95 min	¹⁶ O(p,a) ¹³ N
Carbon-11	20.3 min	¹⁴ N(p,a) ¹¹ C
Fluorine-18	109.7 min	¹⁸ O(p,n) ¹⁸ F

Short-lived, nearby cyclotron required

¹⁸F- 2-fluoro-2-deoxy-D-glucose

PET's most important clinical role is in oncology, with fluorine-18 as the tracer, since it has proven to be the most accurate non-invasive method of detecting and evaluating most cancers. It is also well used in cardiac and brain imaging.

Detector module:

4-8 Detector blocks per module
1 Photomultiplier and 4x4 to 6x6 scintillators per block
Scintillator dimensions: '(6-8)x(6-8x)(20x30) mm

Scintillators used for PET

"BGO" : Bi4Ge3O12 "LYSO": LuYSiO5:Ce3+ "LSO", Lu2SiO5:Ce3+

TOTAL : up to 10.000 scintillators , 1000 photomultipliers

Costs (equipment, operation, personel, etc): ~ 1000 US \$/scan **Break even:** ~ 60 scans/month